The Joint Commission has approved the following revisions for prepublication. While revised requirements are published in the semiannual updates to the print manuals (as well as in the online E-dition®), certified organizations and paid subscribers can also view them in the monthly periodical The Joint Commission Perspectives®. To begin your subscription, call 800-746-6578 or visit http://www.jcrinc.com.

Standards Revisions Related to Life Safety Code Update

APPLICABLE TO NURSING CARE CENTERS

Effective January 9, 2017

Environment of Care (EC) Chapter

EC.01.01.01
The organization plans activities that minimize risks in the environment of care. Note: One or more persons can be assigned to manage risks associated with the management plans described in this standard.

Elements of Performance for EC.01.01.01

1. Leaders identify an individual(s) to manage risk, coordinate risk reduction activities in the environment of care, collect information on deficiencies, and disseminate summaries of actions and results.
 Note 1: This information is disseminated to individuals with responsibility for the issues being addressed.
 Note 2: Deficiencies include injuries, problems, or use errors.

2. Leaders identify an individual(s) to intervene whenever environmental conditions immediately threaten life or health or threaten to damage equipment or buildings.

3. The organization has a written plan for providing a safe environment for everyone who enters the organization’s facilities.

Key: © indicates that documentation is required; R indicates an identified risk area
EC.02.01.01
The organization manages safety and security risks.

Elements of Performance for EC.02.01.01

1. The organization implements its process to identify safety and security risks associated with the environment of care that could affect patients, residents, staff, and other people coming to the organization's facilities. Note: Risks are identified from internal sources such as ongoing monitoring of the environment, results of root cause analyses, results of proactive risk assessments of high-risk processes, and from credible external sources such as Sentinel Event Alerts.

3. The organization takes action to minimize or eliminate identified safety and security risks associated with the physical environment.

5. The organization maintains all grounds and equipment.

11. The organization acts in accordance with product notices and recalls. (See also MM.05.01.17, EPs 1–4)

15. The organization has written procedures to follow in the event of a patient or resident elopement.

EC.02.01.03
The organization prohibits smoking except in specific circumstances.

Elements of Performance for EC.02.01.03

1. The organization develops a written policy prohibiting smoking in all buildings except for designated areas for patients and residents in specific circumstances. The organization defines specific circumstances that may result in exceptions to the policy. Note: The scope of this EP is concerned with all smoking types—tobacco, electronic, or other.

3. If the organization decides that certain patients and residents may smoke, the leaders develop written criteria identifying the specific circumstances under which they may smoke, as determined by an initial smoking assessment. The criteria also describe where and when they may smoke, whether supervision is required, and the frequency of smoking reassessments. (See also PC.01.02.01, EP 13)

4. If the organization decides that certain patients and residents may smoke, it designates smoking areas that are environmentally separate from care, treatment, and service areas. Note: This does not require that a designated smoking area be a specific distance from care, treatment, and service areas. A physically separate, well-ventilated room that is exhausted to the outside is acceptable.

6. The organization takes action to maintain compliance with its smoking policy.
EC.02.02.01
The organization manages risks related to hazardous materials and waste.

Elements of Performance for EC.02.02.01

3. The organization has written procedures, including the use of precautions and personal protective equipment, to follow in response to hazardous material and waste spills or exposures. (See also IC.02.01.01, EP 3)

4. The organization implements its procedures in response to hazardous material and waste spills or exposures. (See also IC.02.01.01, EP 2)

5. The organization minimizes risks associated with selecting, handling, storing, transporting, using, and disposing of hazardous chemicals.

7. The organization minimizes risks associated with the selection and use of hazardous energy sources.
 Note: Hazardous energy is produced by both ionizing equipment (for example, portable x-ray machines) and nonionizing equipment (for example, lasers, microwaves).

8. The organization minimizes risks associated with disposing of hazardous medications. (See also MM.01.01.03, EPs 1–3)

11. For managing hazardous materials and waste, the organization has the permits, licenses, manifests, and safety data sheets required by law and regulation.

12. The organization labels hazardous materials and waste. * Labels identify the contents and hazard warnings. (See also IC.02.01.01, EP 6)
 Footnote *: The National Fire Protection Association (NFPA) and the Occupational Safety and Health Administration's (OSHA) Bloodborne Pathogens and Hazard Communications Standards provide details on labeling requirements.

EC.02.03.01
The organization manages fire risks.

Elements of Performance for EC.02.03.01

1. The organization minimizes the potential for harm from fire, smoke, and other products of combustion.

9. The organization has a written fire response plan that describes the specific roles of staff and licensed independent practitioners at and away from a fire's point of origin, including when and how to sound fire alarms, how to contain smoke and fire, how to use a fire extinguisher, how to assist and relocate patients, and how to evacuate to areas of refuge.
 Note: For additional guidance, see NFPA 101-2012: 18/19: 7.1; 7.2.
EC.02.03.03
The organization conducts fire drills.

Elements of Performance for EC.02.03.03

1. The organization conducts fire drills once per shift per quarter in each building defined as a health care occupancy by the Life Safety Code. (See also LS.01.02.01, EP 11)
 Note 1: Patients and residents may, but need not be, evacuated during drills.
 Note 2: When drills are conducted between 9:00 P.M. and 6:00 A.M., the organization may use alternative methods to notify staff instead of activating audible alarms.
 Note 3: In shared facilities, drills need to be conducted only in areas of the building that the organization occupies.

3. When quarterly fire drills are required, at least 50% are unannounced. Fire drills are held at unexpected times and under varying conditions. Fire drills include transmission of fire alarm signal and simulation of emergency fire conditions.
 Note 1: When drills are conducted between 9:00 P.M. and 6:00 A.M., the organization may use alternative methods to notify staff instead of activating audible alarms.
 Note 2: For additional guidance, see NFPA 101-2012: 18/19: 7.1.7; 7.1; 7.2; 7.3.

4. Staff who work in buildings where patients and residents are housed or treated participate in drills according to the organization’s fire response plan.

5. The organization critiques fire drills to evaluate fire safety equipment, fire safety building features, and staff response to fire. The evaluation is documented.

EC.02.03.05
The organization maintains fire safety equipment and fire safety building features.
Note: This standard does not require organizations to have the types of fire safety equipment and building features described in the elements of performance of this standard. However, if these types of equipment or features exist within the building, then the following maintenance, testing, and inspection requirements apply.

Elements of Performance for EC.02.03.05

1. At least quarterly, the organization tests supervisory signal devices on the inventory (except valve tamper switches). The results and completion dates are documented.
 Note 1: For additional guidance on performing tests, see NFPA 72-2010: Table 14.3.1.
 Note 2: Supervisory signals include the following: control valves; pressure supervisory; pressure tank, pressure supervisory for a dry pipe (both high and low conditions), steam pressure; water level supervisory signal initiating device; water temperature supervisory; and room temperature supervisory.

2. Every 6 months, the organization tests vane-type and pressure-type water flow devices and valve tamper switches on the inventory. The results and completion dates are documented.
 Note 1: For additional guidance on performing tests, see NFPA 72-2010: Table 14.4.5.
 Note 2: Mechanical water-flow devices (including, but not limited to, water motor gongs) should be tested quarterly. The results and completion dates are documented. (For full text, refer to NFPA 25-2011: Table 5.1.1.2)
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Every 12 months, the organization tests fire alarm equipment on the inventory for notifying off-site fire responders. The results and completion dates are documented. Note: For additional guidance on performing tests, see NFPA 72-2010: Table 14.4.5.</td>
</tr>
<tr>
<td>6.</td>
<td>For automatic sprinkler systems: The organization tests electric motor–driven fire pumps monthly and diesel-engine-driven fire pumps weekly under no-flow conditions. The results and completion dates are documented. Note: For additional guidance on performing tests, see NFPA 25-2011: 8.3.1; 8.3.2.</td>
</tr>
<tr>
<td>10.</td>
<td>For automatic sprinkler systems: Every quarter the organization inspects all fire department water supply connections. The results and completion dates are documented. Note: For additional guidance on performing tests, see NFPA 25-2011: 13.7; Table 13.1.1.2.</td>
</tr>
<tr>
<td>13.</td>
<td>Every six months, the organization inspects any automatic fire-extinguishing system in a kitchen. The results and completion dates are documented. Note 1: Discharge of the fire-extinguishing systems is not required. Note 2: For additional guidance on performing inspections, see NFPA 96-2011: 11.2.</td>
</tr>
<tr>
<td>15.</td>
<td>At least monthly, the organization inspects portable fire extinguishers. The results and completion dates are documented. Note 1: There are many ways to document the inspections, such as using bar-coding equipment, using check marks on a tag, or using an inventory. Note 2: Inspections involve a visual check to determine correct type of and clear and unobstructed access to a fire extinguisher, in addition to a check for broken parts and full charge. Note 3: For additional guidance on inspection of fire extinguishers, see NFPA 10-2010: 7.2.2; 7.2.4.</td>
</tr>
<tr>
<td>16.</td>
<td>Every 12 months, the organization performs maintenance on portable fire extinguishers, including recharging. Individuals performing annual maintenance on extinguishers are certified. The results and completion dates are documented. Note 1: There are many ways to document the maintenance, such as using bar-coding equipment, using check marks on a tag, or using an inventory. Note 2: For additional guidance on maintaining fire extinguishers, see NFPA 10-2010: 7.1.2; 7.2.2; 7.2.4; 7.3.1.</td>
</tr>
</tbody>
</table>

EC.02.04.01
The organization manages medical equipment risks.

Elements of Performance for EC.02.04.01

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>The organization identifies, in writing, the activities for maintaining, inspecting, and testing for all medical equipment on the inventory. Note: Organizations may use different strategies for different items as appropriate. For example, strategies such as predictive maintenance, reliability-centered maintenance, interval-based maintenance, corrective maintenance, or metered maintenance may be selected to provide for reliable performance.</td>
</tr>
</tbody>
</table>
4. The organization identifies, in writing, frequencies for inspecting, testing, and maintaining medical equipment on the inventory based on criteria such as manufacturers’ recommendations, risk levels, or current organization experience. Note 1: Medical equipment with activities and associated frequencies in accordance with manufacturers’ recommendations must have a 100% completion rate. Note 2: Scheduled maintenance activities for high-risk medical equipment in an alternative equipment maintenance (AEM) program inventory must have a 100% completion rate. Scheduled maintenance activities for non-high-risk medical equipment in an alternative equipment maintenance (AEM) program inventory may be deferred as defined by organization policy, provided the completion rate is not less than 90%.

5. The organization monitors and reports all incidents in which medical equipment is suspected in or attributed to the death, serious injury, or serious illness of any individual, as required by the Safe Medical Devices Act of 1990.

6. The organization has written procedures to follow when medical equipment fails, including using emergency clinical interventions and backup equipment.

EC.02.04.03
The organization inspects, tests, and maintains medical equipment.

Elements of Performance for EC.02.04.03

1. Before initial use of medical equipment, the organization performs safety, operational, and functional checks.

2. The organization inspects, tests, and maintains all life-support equipment. These activities are documented. Note 1: High-risk equipment includes medical equipment for which there is a risk of serious injury or even death to a patient or staff member should it fail, which includes life-support equipment. Note 2: Required activities and associated frequencies for maintaining, inspecting, and testing of medical equipment completed in accordance with manufacturers’ recommendations must have a 100% completion rate. Note 3: Scheduled maintenance activities for high-risk medical equipment in an alternative equipment maintenance (AEM) program inventory must have a 100% completion rate.

3. The organization inspects, tests, and maintains non-life-support equipment. These activities are documented.

5. The organization performs equipment maintenance and chemical and biological testing of water used in hemodialysis. These activities are documented.
EC.02.05.01
The organization manages risks associated with its utility systems.

Elements of Performance for EC.02.05.01

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The organization designs and installs utility systems that meet patient or resident care and operational needs.</td>
</tr>
</tbody>
</table>
| 3. | The organization identifies, in writing, inspection and maintenance activities for all operating components of utility systems on the inventory.
Note: Organizations may use different approaches to maintenance. For example, activities such as predictive maintenance, reliability-centered maintenance, interval-based maintenance, corrective maintenance, or metered maintenance may be selected to provide for dependable performance. |
| 4. | The organization identifies, in writing, the frequencies for inspecting, testing, and maintaining all operating components of the utility systems, based on criteria such as manufacturers' recommendations, risk levels, or organization experience. |
| 5. | The organization minimizes pathogenic biological agents in cooling towers, domestic hot- and cold-water systems, and other aerosolizing water systems. |
| 6. | In areas designed to control airborne contaminants (such as biological agents, gases, fumes, dust), the ventilation system provides appropriate pressure relationships, air-exchange rates, and filtration efficiencies.
Note: Areas designed for control of airborne contaminants include spaces such as special procedure rooms, rooms for patients and residents diagnosed or suspected of having airborne communicable diseases (for example, pulmonary or laryngeal tuberculosis), patients and residents in "protective environment" rooms, pharmacies, and sterile supply rooms. For further information, see Guidelines for Design and Construction of Health Care Facilities, 2014 edition, administered by the Facility Guidelines Institute and published by the American Society for Healthcare Engineering (ASHE). |
| 7. | The organization maps the distribution of its utility systems. |
| 8. | The organization labels utility system controls so that staff are able to partially or completely shut down systems in emergencies.
Note 1: Examples of utility system controls that should be labeled are utility source valves, utility system main switches and valves, and individual circuits in an electrical distribution panel.
Note 2: For example, the fire alarm system's circuit is clearly labeled as Fire Alarm Circuit; the disconnect method (that is, the circuit breaker) is marked in red; and access is restricted to authorized personnel. Information regarding the dedicated branch circuit for the fire alarm panel is located in the control unit. For additional guidance, see NFPA 101-2012: 18/19.3.4.1; 9.6.1.3; NFPA 72-2010: 10.5.5.2. |
| 9. | The organization has written procedures for responding to utility system disruptions. |
| 10. | The organization's procedures address shutting off the malfunctioning system and notifying staff in affected areas. |
11. The organization’s procedures address performing emergency clinical interventions during utility system disruptions.

12. The organization’s procedures address how to obtain emergency repair services.

13. The organization responds to utility system disruptions as described in its procedures.

16. In non–critical care areas, the ventilation system provides required pressure relationships, temperature, and humidity. Note: Examples of non–critical care areas are general care nursing units; clean and soiled utility rooms in acute care areas; laboratories, pharmacies, diagnostic and treatment areas, food preparation areas, and other support departments.

18. Medical gas storage rooms and transfer and manifold rooms comply with NFPA 99-2012: 9.3.7.

19. The emergency power supply system’s equipment and environment are maintained per manufacturers’ recommendations, including ambient temperature of at least 40°F; ventilation supply and exhaust; and water jacket temperature (when required). (For full text, refer to NFPA 99-2012: 9.3.10)

EC.02.05.03

The organization has a reliable emergency electrical power source.

Elements of Performance for EC.02.05.03

1. For facilities that were constructed, or had a change in occupancy type, or have undergone an electrical system upgrade since 1983, the organization has a Type 1 or Type 3 essential electrical system in accordance with NFPA 99, 2012 edition. This essential electrical system must be divided into three branches, including the life safety branch, critical branch, and equipment branch. Both the life safety branch and the critical branch are kept independent of all other wiring and equipment, and they transfer within 10 seconds of electrical interruption. Each branch has at least one automatic transfer switch. For additional guidance, see NFPA 99-2012: 6.4.2.2; 6.4.2.2.6.

2. The organization provides emergency power within 10 seconds for the following: Alarm systems, as required by the Life Safety Code. Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).

3. The organization provides emergency power within 10 seconds for the following: Exit route and exit sign illumination, as required by the Life Safety Code. Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).
4. The organization provides emergency power within 10 seconds for the following:
 Emergency communication systems, as required by the Life Safety Code.
 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).

5. The organization provides emergency power within 10 seconds for the following:
 Equipment that could cause patient or resident harm when it fails (including life-support systems), medical air compressors, and medical vacuum systems. (See also EM.02.02.09, EP 2)
 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), see NFPA 99-2012: 6.4.1.1; 6.4.2.2.3.3; NFPA 110-2010: 4.1; Table 4.1(a).

10. The organization provides emergency power within 10 seconds for the following:
 Emergency lighting at emergency generator locations. The organization’s emergency power system (EPS) has a remote manual stop station (with identifying label) to prevent inadvertent or unintentional operation. A remote annunciator (powered by storage battery) is located outside the EPS location.
 Note: For guidance in establishing a reliable emergency power system (that is, an essential electrical distribution system), refer to NFPA 99-2012: 6.4.1.1.6; 6.4.1.1.17; 6.4.2.2.3.3; NFPA 110-2010: 5.6.5.6; 7.3.1.

11. The organization provides emergency power for elevators selected to provide service to patients during interruption of normal power (at least one for nonambulatory patients).
 Note: For guidance in establishing a reliable emergency power system for the equipment branch (that is, an essential electrical distribution system), refer to NFPA 99-2012: 6.4.2.2.5; 6.4.2.2.5.4.

EC.02.05.05
The organization inspects, tests, and maintains utility systems.
Note: At times, maintenance is performed by an external service. In these cases, organizations are not required to possess maintenance documentation but have access to such documentation during survey and as needed.

Elements of Performance for EC.02.05.05

1. When performing repairs or maintenance activities, the organization has a process to manage risks associated with air-quality requirements; infection control; utility requirements; noise, odor, dust, vibration; and other hazards that affect care, treatment, or services for patients, staff, and visitors.

2. The organization tests utility system components on the inventory before initial use. The completion date and the results of the tests are documented.
4. The organization inspects, tests, and maintains the following: Life-support utility system components on the inventory. The completion date and the results of the activities are documented.
 Note 1: A high-risk utility system includes components for which there is a risk of serious injury or even death to a patient or staff member should it fail, which includes life-support equipment.
 Note 2: Required activities and associated frequencies for maintaining, inspecting, and testing of utility systems components completed in accordance with manufacturers' recommendations must have a 100% completion rate.
 Note 3: Scheduled maintenance activities for high-risk utility systems components in an alternative equipment maintenance (AEM) program inventory must have a 100% completion rate.

5. The organization inspects, tests, and maintains the following: Infection control utility system components on the inventory (for example, ventilation systems supporting negative and positive air pressure isolation rooms). The completion date and the results of the activities are documented.
 Note 1: Required activities and associated frequencies for maintaining, inspecting, and testing of utility systems components completed in accordance with manufacturers' recommendations must have a 100% completion rate.
 Note 2: Scheduled maintenance activities for infection control utility systems components in an alternative equipment maintenance (AEM) program inventory must have a 100% completion rate.

6. The organization inspects, tests, and maintains the following: Non-life-support utility system components on the inventory. The completion date and the results of the activities are documented.
 Note: Scheduled maintenance activities for non-high-risk utility systems components in an alternative equipment maintenance (AEM) program inventory may be deferred as defined by organization policy, provided the completion rate is not less than 90%.

7. The organization meets all other HealthCare Facilities Code requirements for electrical distribution, HVAC, as related to NFPA 99-2012: Chapters 6 and 9.

EC.02.05.07
The organization inspects, tests, and maintains emergency power systems.
Note: This standard does not require organizations to have the types of emergency power equipment described in the elements of performance of this standard. However, if these types of equipment exist within the building, then the following maintenance, testing, and inspection requirements apply.

Elements of Performance for EC.02.05.07

1. At least monthly, the organization performs a functional test of battery-powered lights required for egress for a minimum duration of 30 seconds and a visual inspection of EXIT signs. The test results and completion dates are documented.
 Note: For additional guidance, see NFPA 101-2012: 7.9.3; 7.10.9.

2. Every 12 months, the organization either performs a functional test of battery-powered lights on the inventory required for egress for a duration of 1 1/2 hours, or the organization replaces all batteries every 12 months and, during replacement, performs a random test of 10% of all batteries for 1 1/2 hours. The test results and completion dates are documented.
3. The organization performs a functional test of Level 1 stored emergency power supply systems (SEPSS) on a monthly basis and performs a test of Level 2 SEPSS on a quarterly basis. Test duration is for five minutes or as specified for its class (whichever is less). The organization performs an annual test at full load for 60% of the full duration of its class. The test results and completion dates are documented. Note 1: Non–SEPSS battery backup emergency power systems that the organization has determined to be critical for operations during a power failure (for example, laboratory equipment or electronic medical records) should be properly tested and maintained in accordance with manufacturers' recommendations. Note 2: Level 1 SEPSS are intended to automatically supply illumination or power to critical areas and equipment essential for safety to human life. Included are systems that supply emergency power for such functions as illumination for safe exiting, ventilation where it is essential to maintain life, fire detection and alarm systems, public safety communications systems, and processes where the current interruption would produce serious life safety or health hazards to patients and residents, the public, or staff. Note 3: Class defines the minimum time for which the SEPSS is designed to operate at its rated load without being recharged. For additional guidance, see NFPA 111-2010: 8.4.

4. At least weekly, the organization inspects the emergency power supply system (EPSS), including all associated components and batteries. The results and completion dates of weekly inspections are documented. Note: For additional guidance, see NFPA 110-2010: 8.3.1; 8.3.3; 8.3.4; 8.4.1.

5. At least monthly, the organization tests each emergency generator under load for at least 30 continuous minutes. The cool-down period is not part of the 30 continuous minutes. The test results and completion dates are documented.

6. The monthly tests for diesel-powered emergency generators are conducted with a dynamic load that is at least 30% of the nameplate rating of the generator or meets the manufacturer’s recommended prime movers’ exhaust gas temperature. If the organization does not meet either the 30% of nameplate rating or the recommended exhaust gas temperature during any test in EC.02.05.07, EP 5, then it must test the emergency generator once every 12 months using supplemental (dynamic or static) loads of 50% of nameplate rating for 30 minutes, followed by 75% of nameplate rating for 60 minutes, for a total of 1 ½ continuous hours. Note: Tests for non-diesel-powered generators need only be conducted with available load.

7. At least monthly, the organization tests all automatic transfer switches on the inventory. The test results and completion dates are documented.

8. At least annually, the organization tests the fuel quality. The test results and completion dates are documented. Note: For additional guidance, see NFPA 110-2010: 8.3.8.

9. At least once every 36 months, organizations with a generator providing emergency power for the services listed in EC.02.05.03, EPs 5 and 6, test each emergency generator for a minimum of 4 continuous hours. The test results and completion dates are documented. Note: For additional guidance, see NFPA 110-2010, Chapter 8.
10. The 36-month diesel-powered emergency generator test uses a dynamic or static load that is at least 30% of the nameplate rating of the generator or meets the manufacturer's recommended prime movers' exhaust gas temperature. Note: Tests for non-diesel-powered generators need only be conducted with available load.

11. If a required emergency power system test fails, the organization implements measures to protect patients, residents, visitors, and staff until necessary repairs or corrections are completed.

12. If a required emergency power system test fails, the organization performs a retest after making the necessary repairs or corrections.

EC.02.05.09

The organization inspects, tests, and maintains medical gas and vacuum systems. Note: This standard does not require organizations to have the medical gas and vacuum systems discussed below. However, if an organization has these types of systems, then the following inspection, testing, and maintenance requirements apply.

Elements of Performance for EC.02.05.09

1. In time frames defined by the organization, the organization inspects, tests, and maintains critical components of piped medical gas and vacuum systems, including the source, the distribution and the inlets/outlets and the alarms that protect the piped medical gas systems. These activities and results are documented.

2. When the organization has bulk oxygen systems above ground, they are in a locked enclosure (such as a fence) at least 10 feet from vehicles and sidewalks. There is permanent signage stating “OXYGEN – NO SMOKING – NO OPEN FLAMES.” Note: For additional guidance, refer to NFPA 99-2012: 5.1.3.5.12.

3. The organization’s emergency oxygen supply connection is installed in a manner that allows a temporary auxiliary source to connect to it. Note: For additional guidance, refer to NFPA 99-2012: 5.1.3.5.13.

4. The organization tests piped medical gas and vacuum systems for purity, correct gas, and proper pressure when these systems are installed, modified, or repaired. The test results and completion dates are documented.

5. The organization makes main supply valves and area shutoff valves for piped medical gas and vacuum systems accessible and clearly identifies what the valves control.
6. The organization implements a policy on all cylinders within the organization that includes the following:
- Proper handling and transporting (for example, in carts, attached to equipment, on racks) to ensure safety
- Physically segregating full and empty cylinders from each other in order to assist staff in selecting the proper cylinder
- Labeling empty cylinders
- Prohibiting transfilling in any compartment with patient care rooms
Note: For additional guidance, see NFPA 99-2012: 11.5.2.3; 11.6.2; 11.6.2.3; 11.6.5; 11.6.5.2; 11.6.5.3; 11.7.3.2.

EC.02.06.01
The organization establishes and maintains a safe, functional environment.

<table>
<thead>
<tr>
<th>Elements of Performance for EC.02.06.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Interior spaces meet the needs of the patient and resident populations for safety and suitability for the care, treatment, and services provided. Note: Interior spaces contain rehabilitation equipment and activities needed to achieve patients’ and residents’ goals, but they are arranged in a way that does not compromise the safety of the environment.</td>
</tr>
<tr>
<td>4. The organization provides outside areas for patient and resident use, suitable to the patient’s or resident’s age or other characteristics.</td>
</tr>
<tr>
<td>5. The organization provides storage space to meet patients’ and residents’ needs.</td>
</tr>
<tr>
<td>20. Areas used by patients and residents are clean and free of offensive odors.</td>
</tr>
<tr>
<td>22. Spaces are accessible for safe wandering and exploring.</td>
</tr>
<tr>
<td>23. The organization provides emergency access to all locked and occupied spaces.</td>
</tr>
<tr>
<td>26. The organization keeps furnishings and equipment safe and in good repair.</td>
</tr>
<tr>
<td>34. A sufficient number of electrical outlets with sufficient capacities are present to support the services offered to patients and residents.</td>
</tr>
<tr>
<td>38. The organization meets the needs of patients or residents with dementia by providing visual cues or landmarks in the physical environment to assist with wayfinding. (See also HR.01.05.03, EP 24)</td>
</tr>
<tr>
<td>39. The organization encourages the display of objects in the patient’s or resident’s personal space that reflect meaningful memories and religious, spiritual, or cultural traditions from his or her past. (See also HR.01.05.03, EP 24)</td>
</tr>
</tbody>
</table>
40. For organizations that elect The Joint Commission Memory Care Certification option:
The organization provides an environment in which noises that may overstimulate or
distress patients and residents with dementia are minimized.
Note: Examples of noises that may overstimulate or distress patients or residents
with dementia include alarms and maintenance activities.

41. For organizations that elect The Joint Commission Memory Care Certification option:
To minimize overstimulation and distress for patients and residents with dementia,
the organization provides an environment that minimizes confusing visual stimuli.
Note: Examples of visual stimuli that may cause confusion include lighting that
creates shadows or glare; furnishings with busy patterns; lack of color contrast with
walls, tables, seating, and floor surfaces.

42. For organizations that elect The Joint Commission Memory Care Certification option:
The organization provides access to outdoor space(s) for patients and residents with
dementia. This space has the following characteristics:
- Safety and security (Refer to EC.02.01.01, EPs 1 and 3)
- Seating for patients and residents
- Pleasant stimulation such as flowers, birds, and sunlight
Note: If the provision of outdoor space is not possible, organizations may simulate
outdoor space, such as a sunroom, to meet this requirement.

43. For organizations that elect The Joint Commission Memory Care Certification option:
To minimize distress for patients and residents with dementia, the organization
provides an environment for walking and exploring that is free of obstructions and
barriers that may cause falls.
Note: Examples of obstructions or barriers that may cause falls include rugs or floor
mats, changes in floor elevation, and movable equipment in corridors.

44. For organizations that elect The Joint Commission Memory Care Certification option:
To minimize distress for patients and residents with dementia, the organization limits
the use of its intercom paging system.

45. For organizations that elect The Joint Commission Memory Care Certification option:
The organization creates interest points in the physical environment that encourage
visual or tactile stimulation for patients and residents with dementia.
Note: Examples of interest points include a fish tank, a colorful tapestry, or objects
with varying textures and shapes.

EC.02.06.03
The organization establishes and maintains a safe and functional dining environment.

Elements of Performance for EC.02.06.03

1. The dining environment encourages eating and socialization by providing small group
settings and minimizing distractions, such as noise or activities.

6. Dining areas have adequate space for patients and residents with equipment required
for care, treatment, and services.
EC.02.06.05
The organization manages its environment during demolition, renovation, or new construction to reduce risk to those in the organization.

Elements of Performance for EC.02.06.05

2. When planning demolition, construction, renovation, or general maintenance, the organization conducts a preconstruction risk assessment for air quality requirements, infection control, utility requirements, noise, vibration, and other hazards that affect care, treatment, and services.

 Note: Refer to LS.01.02.01 for information on fire safety procedures to implement during construction or renovation.

3. The organization takes action based on its assessment to minimize risks during demolition, construction, or renovation.

EC.04.01.01
The organization collects information to monitor conditions in the environment.

Elements of Performance for EC.04.01.01

3. The organization internally reports and investigates the following: Injuries to residents or others in the organization’s facilities.

4. The organization internally reports and investigates the following: Occupational illnesses and staff injuries.

5. The organization internally reports and investigates the following: Incidents of damage to its property or the property of others in locations it controls.

6. The organization internally reports and investigates the following: Security incidents involving patients, residents, staff, or others in locations it controls.

8. The organization internally reports and investigates the following: Hazardous materials and waste spills and exposures.

9. The organization internally reports and investigates the following: Fire safety management problems, deficiencies, and failures.

10. The organization internally reports and investigates the following: Medical equipment management problems, failures, and use errors.

11. The organization internally reports and investigates the following: Utility systems management problems, failures, or use errors.

12. The organization conducts environmental tours every six months in patient and resident care areas to evaluate the effectiveness of previously implemented activities intended to minimize or eliminate risks in the environment of care.
13. The organization conducts annual environmental tours in nonresident care areas to evaluate the effectiveness of previously implemented activities intended to minimize or eliminate risks in the environment.

14. The organization uses its tours to identify environmental deficiencies, hazards, and unsafe practices.

EC.04.01.03
The organization analyzes identified environment of care issues.

Elements of Performance for EC.04.01.03

1. Representatives from clinical, administrative, and support services participate in the analysis of environment of care data.

2. The organization uses the results of data analysis to identify opportunities to resolve environmental safety issues.

EC.04.01.05
The organization improves its environment of care.

Elements of Performance for EC.04.01.05

1. The organization takes action on the identified opportunities to resolve environmental safety issues.

2. The organization evaluates changes to determine if they resolved environmental safety issues.

Life Safety (LS) Chapter

LS.01.01.01
The organization designs and manages the physical environment to comply with the Life Safety Code.

Elements of Performance for LS.01.01.01

1. The organization assigns an individual(s) to assess compliance with the Life Safety Code and manage the Statement of Conditions (SOC) when addressing survey-related deficiencies.

2. In time frames defined by the organization, the organization performs a building assessment to determine compliance with the Life Safety chapter.
3. The organization maintains current and accurate drawings denoting features of fire safety and related square footage. Fire safety features include the following:
 - Areas of the building that are fully sprinklered (if the building is partially sprinklered)
 - Locations of all hazardous storage areas
 - Locations of all fire-rated barriers
 - Locations of all smoke-rated barriers
 - Sleeping and non-sleeping suite boundaries, including the size of the identified suites
 - Locations of designated smoke compartments
 - Locations of chutes and shafts
 - Any approved equivalencies or waivers

4. When the organization plans to resolve a deficiency through a Survey-Related Plan for Improvement (SPFI), the organization meets the 60-day time frame.
 Note 1: If the corrective action will exceed the 60-day time frame, the organization must request a time-limited waiver within 30 days from the end of survey.
 Note 2: If there are alternative systems, methods, or devices considered equivalent, the organization may submit an equivalency request using its Statement of Conditions (SOC).
 Note 3: For additional guidance on equivalencies, see NFPA 2012: 101:1.4.3.

6. The organization does not remove or minimize an existing life safety feature when such feature is a requirement for new construction. Existing life safety features, if not required by the Life Safety Code, can be either maintained or removed. (For full text, refer to NFPA 101-2012: 4.6.12.2; 4.6.12.3)

LS.01.02.01
The organization protects occupants during periods when the Life Safety Code is not met or during periods of construction.

Elements of Performance for LS.01.02.01

1. The organization has a written interim life safety measure (ILSM) policy that covers situations when Life Safety Code deficiencies cannot be immediately corrected or during periods of construction. The policy includes criteria for evaluating when and to what extent the organization implements LS.01.02.01, EPs 2–14 to compensate for increased life safety risk. The criteria include the assessment process to determine when interim life safety measures are implemented.

2. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization either evacuates the building or notifies the fire department (or other emergency response group) and initiates a fire watch when a fire alarm system is out of service more than 4 out of 24 hours or a sprinkler system is out of service more than 10 hours in a 24-hour period in an occupied building. Notification and fire watch times are documented. (For full text, refer to NFPA 101-2012: 9.6.1.6; 9.7.6; NFPA 25-2011: 15.5.2)

3. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Posts signage identifying the location of alternative exits to everyone affected.
4. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Inspects exits in affected areas on a daily basis. The need for these inspections is based on criteria in the organization’s interim life safety measure (ILSM) policy.

5. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Provides temporary but equivalent fire alarm and detection systems for use when a fire system is impaired. The need for equivalent systems is based on criteria in the organization’s interim life safety measure (ILSM) policy.

6. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Provides additional firefighting equipment. The need for this equipment is based on criteria in the organization’s interim life safety measure (ILSM) policy.

7. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Uses temporary construction partitions that are smoke-tight, or made of noncombustible or limited-combustible material that will not contribute to the development or spread of fire. The need for these partitions is based on criteria in the organization’s interim life safety measure (ILSM) policy.

8. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Increases surveillance of buildings, grounds, and equipment, giving special attention to construction areas and storage, excavation, and field offices. The need for increased surveillance is based on criteria in the organization’s interim life safety measure (ILSM) policy.

9. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Enforces storage, housekeeping, and debris-removal practices that reduce the building’s flammable and combustible fire load to the lowest feasible level. The need for these practices is based on criteria in the organization’s interim life safety measure (ILSM) policy.

10. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Provides additional training to those who work in the organization on the use of firefighting equipment. The need for additional training is based on criteria in the organization’s interim life safety measure (ILSM) policy.

11. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Conducts one additional fire drill per shift per quarter. The need for additional drills is based on criteria in the organization’s interim life safety measure (ILSM) policy. (See also EC.02.03.03, EP 1)
12. When the organization identifies Life Safety Code deficiencies that cannot be immediately corrected or during periods of construction, the organization does the following: Inspects and tests temporary systems monthly. The completion date of the tests is documented. The need for these inspections and tests is based on criteria in the organization's interim life safety measure (ILSM) policy.

13. The organization conducts education to promote awareness of building deficiencies, construction hazards, and temporary measures implemented to maintain fire safety. The need for education is based on criteria in the organization's interim life safety measure (ILSM) policy.

14. The organization trains those who work in the organization to compensate for impaired structural or compartmental fire safety features. The need for training is based on criteria in the organization's interim life safety measure (ILSM) policy. Note: Compartmentalization is the concept of using various building components (for example, fire-rated walls and doors, smoke barriers, fire-rated floor slabs) to prevent the spread of fire and the products of combustion so as to provide a safe means of egress to an approved exit. The presence of these features varies, depending on the building occupancy classification.

LS.02.01.10

Building and fire protection features are designed and maintained to minimize the effects of fire, smoke, and heat.

Elements of Performance for LS.02.01.10

2. When building rehabilitation occurs, the organization incorporates Chapter 43, Building Rehabilitation. (For full text, refer to NFPA 101-2012: Chapter 43; 18/19.4.3)

5. The fire protection ratings for opening protectives in fire barriers, fire-rated smoke barriers, and fire-rated smoke partitions are as follows:
 - Three hours in three-hour barriers and partitions
 - Ninety minutes in two-hour barriers and partitions
 - Forty-five minutes in one-hour barriers and partitions
 - Twenty minutes in thirty-minute barriers and partitions
 (For full text, refer to NFPA 101-2012: 8.3.4; 8.3.3.2; Table 8.3.4.2)
 Note: Labels on fire door assemblies must be maintained in legible condition.

LS.02.01.20

The organization maintains the integrity of the means of egress.

Elements of Performance for LS.02.01.20

1. Doors in a means of egress are not equipped with a latch or lock that requires the use of a tool or key from the egress side, unless a compliant locking configuration is used, such as a delayed-egress locking system as defined in NFPA 101-2012: 7.2.1.6.1 or access-controlled egress door assemblies as defined in NFPA 101-2012: 7.2.1.6.2. (For full text, refer to NFPA 101-2012: 18/19.2.2.2.4; 18/19.2.2.2.5; 18/19.2.2.2.6)
8. Stairs serving five or more stories have signs on each floor landing in the stairwell that identify the story, the stairwell, the top and bottom, and the direction to and story of exit discharge. Information is also presented in tactile lettering. The signs are placed five feet above the floor landing in a position that is easily visible when the door is open or closed. (For full text, refer to NFPA 101-2012: 18/19.2.2.3; 7.2.2.5.4)

9. Exits discharge to the outside at grade level or through an approved exit passageway that is continuous and terminates at a public way or at an exterior exit discharge. (For full text, refer to NFPA 101-2012: 18/19.2.7; 7.2.6; 7.7.2)

11. Exits, exit accesses, and exit discharges (means of egress) are clear of obstructions or impediments to the public way, such as clutter (for example, equipment, carts, furniture), construction material, and snow and ice. (For full text, refer to NFPA 101-2012: 18/19.2.5.1; 7.1.10.1; 7.5.1.1)

Note 1: Wheeled equipment (such as equipment and carts currently in use, equipment used for resident lift and transport, and medical emergency equipment not in use) that maintains at least five feet of clear and unobstructed corridor width is allowed, provided there is a fire plan and training program addressing its relocation in a fire or similar emergency. (For full text, refer to NFPA 101-2012: 18/19.2.3.4 (4))

Note 2: Where the corridor width is at least eight feet and the smoke compartment is fully protected by an electrically supervised smoke detection system or is in direct supervision of facility staff, furniture that is securely attached is allowed provided it does not reduce the corridor width to less than six feet, is only on one side of the corridor, does not exceed 50 square feet, is in groupings spaced at least 10 feet apart, and does not restrict access to building service and fire protection equipment. (For full text, refer to NFPA 101-2012: 18/19.2.3.4 (5))

14. In new buildings, exit corridors are at least eight feet wide, unless otherwise permitted by the Life Safety Code. (For full text, refer to NFPA 101-2012: 18.2.3.4; 18.2.3.5)

15. In existing buildings, exit corridors are at least 48 inches in clear width where serving as a means of egress from resident sleeping rooms. If modifying existing buildings with exit corridors that exceed eight feet, the exit corridors cannot be reduced to less than eight feet. (For full text, refer to NFPA 101-2012: 4.6.12.2; 19.2.3.4)

32. Means of egress are adequately illuminated at all points, including angles and intersections of corridors and passageways, stairways, stairway landings, exit doors, and exit discharges. (For full text, refer to NFPA 101-2012: 18/19.2.8; 7.8.1.1)

33. Illumination in the means of egress, including exit discharges, is arranged so that failure of any single light fixture or bulb will not leave the area in darkness (< 0.2 foot candles). (For full text, refer to NFPA 101-2012: 18/19.2.8; 7.8.1.4)

LS.02.01.30
The organization provides and maintains building features to protect individuals from the hazards of fire and smoke.

Elements of Performance for LS.02.01.30

11. Corridor doors are constructed to resist the passage of smoke, fitted with positive latching hardware, hinged so that they swing, and the doors do not have ventilating louvers or transfer grills (with the exception of bathrooms, toilets, and sink closets that do not contain flammable or combustible materials). Undercuts are no larger than one inch. Roller latches are prohibited. (For full text, refer to NFPA 101-2012: 18/19.3.6.3.1; 19.3.6.3.4; 18.3.6.3.5; 18/19.3.6.4; 18/19.3.6.5; 19.3.6.3.10; 18/19.3.6.3.11)

12. In existing buildings, all corridor doors are constructed of 1 3/4-inch or thicker solid bonded wood core or constructed to resist fire for not less than 20 minutes, and the doors do not have ventilating louvers or transfer grills (with the exception of bathrooms, toilets, and sink closets that do not contain flammable or combustible materials). Roller latches are prohibited. Note: For existing doors, it is acceptable to use a device that keeps the door closed when a force of five pounds is applied to the edge of the door. (For full text, refer to NFPA 101-2012: 19.3.6.3.1; 19.3.6.3.2; 19.3.6.3.5; 19.3.6.3.6)

19. Doors in smoke barriers are self-closing or automatic-closing, constructed of 1 3/4-inch or thicker solid bonded wood core or constructed to resist fire for not less than 20 minutes, and fitted to resist the passage of smoke. The gap between meeting edges of door pairs is no wider than 1/8 of an inch. In new buildings, undercuts are no larger than 3/4 of an inch. (For full text, refer to NFPA 101-2012: 18.3.7.6; 18/19.3.7.8; 8.5.4.1; NFPA 80-2010: 4.8.4.1; 6.3.1.7.1)

LS.02.01.34
The organization provides and maintains fire alarm systems.

Elements of Performance for LS.02.01.34

1. The fire alarm signal automatically transmits using one of the provisions of NFPA 101-2012: 9.6.4. (For full text, refer to NFPA 101-2012: 18/19.3.4)

LS.02.01.35
The organization provides and maintains systems for extinguishing fires.

Elements of Performance for LS.02.01.35

1. The fire alarm system monitors approved automatic sprinkler system components. (For full text, refer to NFPA 101-2012: 18.3.5.1; 19.3.5.3; 9.7.2.1)
5. Sprinkler heads are not damaged. They are also free from corrosion, foreign materials, and paint and have necessary escutcheon plates installed. (For full text, refer to NFPA 101-2012: 18.3.5.1; 19.3.5.3; 9.7.5; NFPA 25-2011: 5.2.1.1.1; 5.2.1.1.2; NFPA 13-2010: 6.2.6.2.2; 6.2.7.1)

6. There are 18 inches or more of open space maintained below the sprinkler deflector to the top of storage. Note: Perimeter wall and stack shelving may extend up to the ceiling when not located directly below a sprinkler head. (For full text, refer to NFPA 101-2012: 18.3.5.1; 19.3.5.3; 9.7.1.1; NFPA 13-2010: 8.5.5.2; 8.5.5.2.1; 8.5.5.3)

8. In both new buildings and existing buildings, the clothing closets in resident sleeping rooms are not required to have sprinkler protection if the closet does not exceed six square feet. (For full text, refer to NFPA 101-2012: 18/19.3.5.10)

9. In new buildings, quick response sprinklers are installed in smoke compartments with resident sleeping rooms. (For full text, refer to NFPA 101-2012: 18/19.3.5.10; 18.3.5.6)

10. The travel distance from any point to the nearest portable fire extinguisher is 75 feet or less. Portable fire extinguishers have appropriate signage, are installed either in a cabinet or secured on a hanger made for the extinguisher, and are at least four inches off the floor. Those fire extinguishers that are 40 pounds or less are installed so the top is not more than 5 feet above the floor. (For full text, refer to NFPA 101-2012: 18/19.3.5.12; 9.7.4.1; NFPA 10-2010: 6.2.1.1; 6.1.3.3.1; 6.1.3.4; 6.1.3.8)

11. Class K–type portable fire extinguishers are located within 30 feet of grease-producing ranges, griddles, broilers, or cooking appliances that use vegetable or animal oils or fats, such as deep fat fryers. A placard is conspicuously placed near the extinguisher stating that the fire protection system should be activated prior to using the fire extinguisher. (For full text, refer to NFPA 101-2012: 18/19.3.2.5.1; NFPA 96-2011: 10.10.2; NFPA 10-2010: 5.5.5; 5.5.5.3; 6.6.2)

LS.02.01.40

The organization provides and maintains special features to protect individuals from the hazards of fire and smoke.

Elements of Performance for LS.02.01.40

2. The organization meets all other Life Safety Code automatic extinguishing requirements related to NFPA 101-2012: 18/19.4.2.
LS.02.01.50
The organization provides and maintains building services to protect individuals from the hazards of fire and smoke.

Elements of Performance for LS.02.01.50

4. All linen and waste chute inlet and discharge service doors have both self-closing and positive-latching devices.
 Note: Discharge doors may be held open with fusible links or electrical hold-open devices. (For full text, refer to NFPA 101-2012: 18/19.5.4; 8.3.3.1; 9.5; NFPA 82-2009: 5.2.3.2.3)

7. Trash chutes discharge into collection rooms that are not used for any other purpose and are separated from the corridor and have a minimum fire resistance rating not less than that specified for the chute. In existing buildings, if the trash collection room is protected with an approved automatic sprinkler system, linen collection may also occur. (For full text, refer to NFPA 101-2012: 18/19.5.4.4; 19.5.4.5; NFPA 82-2009: 5.2.4.1)

8. The organization meets all other Life Safety Code building service requirements related to NFPA 101-2012: 18/19.5.4.

LS.02.01.70
The organization provides and maintains operating features that conform to fire and smoke prevention requirements.

Elements of Performance for LS.02.01.70

1. Smoking is prohibited in any room, ward, or compartment where flammable liquids, combustible gases, or oxygen is used or stored; these areas have signs that read “NO SMOKING” or display the international symbol for no smoking. In facilities where smoking is prohibited and signs are prominently placed at all major entrances, secondary signs that prohibit smoking in hazardous areas are not required. (For full text, refer to NFPA 101-2012: 18/19.7.4)
 Note: The secondary sign exception is not applicable to medical gas storage areas.

2. In areas where smoking is permitted, ashtrays are safely designed and made of noncombustible material. Metal containers with self-closing cover devices in which ashtrays can be emptied are readily available to all areas where smoking is permitted. (For full text, refer to NFPA 101-2012: 18/19.7.4)

3. Decorations (for example, photos, paintings, other art) directly attached to the walls, ceiling, and non-fire-rated doors are permitted provided they do not exceed 20% of the wall, ceiling, or door areas in spaces in non-sprinklered smoke compartments; 30% in spaces in sprinklered smoke compartments; 50% inside patient sleeping rooms that do not exceed four people in sprinklered smoke compartments. (For full text, refer to NFPA 101-2012: 18/19.7.5.6)
4. Soiled linen and trash receptacles larger than 32 gallons are stored in a room protected as a hazardous area.
 Note: Containers that are 96 gallons or less and are labeled and listed as meeting the requirements of FM Approval Standard 6921 (or equivalent) and are used solely for recycling clean waste (including resident records awaiting destruction) are permitted in an unprotected area. Those containers that are greater than 96 gallons are stored in a hazardous storage area. (For full text, refer to NFPA 101-2012: 18/19.7.5.7)

5. Portable space heaters are prohibited in smoke compartments containing sleeping rooms and resident treatment areas. Non-sleeping rooms that are occupied by staff and separated from the corridor are permitted to have portable space heaters, but must contain heating elements not exceeding 212°F. (For full text, refer to NFPA 101-2012: 18/19.7.8)
 Note: For this element of performance, nurses stations are considered patient treatment areas.

6. The organization meets all other Life Safety Code operating feature requirements related to NFPA 101-2012: 18.7/19.7. (See also EC.02.03.01, EP 9; EC.02.03.03, EP 1)